

BIO 302: APRIL 1, 2014

WEEK 11, LECTURE 1: SYSTEMIC TREATMENT OF CANCER: DRUGS, BIOLOGICALS AND IMMUNOTHERAPIES

Dr. George Poste
Chief Scientist, Complex Adaptive Systems Initiative
and Del E. Webb Chair in Health Innovation
Arizona State University
(e-mail: george.poste@asu.edu; Tel. 480-727-8662)

www.casi.asu.edu

Cancer as a Complex Adaptive System: Emergent Phenomena and Tumor Progression (System State Shifts)

For Normal

Tissue Architecture

Genome Instability and Emergence of Clonal Variants

Evasion of Detection/Destruction by Host Immune System

Use of Host Systems to Promote Progression

Invasion and Metastasis

Emergence of Drug-Resistant Clones

Implications of Cancer as a Complex Adaptive System for the Development of More Effective Diagnostics and Therapies

Weeks 11 and 14

- current treatment practices and limitations
- confronting the tumor cell heterogeneity problem
- emerging treatment strategies and the particular promise of immunotherapy
- the time, cost and technical challenges of development of new diagnostics and therapies to achieve FDA approval and marketing

Meeting The Cancer Challenge

The Ideal

- prevention
- cure

US Cancer Deaths 2012

Progress in Reducing Disease Burden Mortality 1970 – 2008*

*S. Soneji et al (2014) JCO 32, 444

US Cancer Prevalence Estimates 2010 and 2020

# People (thous		
	sands)	%
2010	2020	change
3461	4538	31
2311	3265	41
1216	1517	25
1225	1714	40
639	812	27
588	672	15
514	629	22
374	457	22
308	426	38
263	240	29
13,772	18,071	32
	2010 3461 2311 1216 1225 639 588 514 374 308 263	2010 2020 3461 4538 2311 3265 1216 1517 1225 1714 639 812 588 672 514 629 374 457 308 426 263 240

From: A.B. Mariotto et al. (2011) J. Nat. Cancer Inst. 103, 117

The Thin Line Between Hype and Hope

 celebrity populism and delusional belief that more money will solve everything

versus

- fundamental reassessment of why therapeutic success for metastatic solid tumors remains so elusive
- implications of cancer as a complex adaptive system
- clonal heterogeneity and evolutionary clonal dynamics during tumor progression as the major obstacle to effective therapy

The Principal Challenges in Cancer Treatment

- tumor cell heterogeneity and Rx effectiveness
- disseminated disease (metastasis)
- drug-resistance (intrinsic or acquired)
- treatment toxicities and complex clinical care
- treatment cost
- quality-of-life (in-treatment; post-treatment)
- timing of recommendation for palliative care versus interventional care
- end-of-life care

Ensuring That the Patient's Voice is Heard

- what is my prognosis?
- what are the treatment options?
- what is the toxicity of the treatment?
- how will treatment impact my quality-of-life?
- what is likely course of my disease if I don't take treatment?

Aspirations for Improved Cancer Diagnosis and Treatment

Better Approaches to Early Stage Disease

- earlier detection of subclinical disease
- earlier detection of clinical disease before metastasis occurs (surgery = cure)
- better methods to assess metastatic risk from primary tumor to evaluate need for exposure to adjuvant therapy
 - can tumors with metastatic potential be identified versus tumors that have low/no probability of metastatic spread?

Aspirations for Improved Cancer Diagnosis and Treatment

Improved Outcomes

- maximize the efficacy and safety of Rx interventions against advanced (metastatic) disease
 - circumventing variability in tumor cell clones to the selected Rx regimen (overcoming the heterogeneity problem)
 - dynamic monitoring of changing clonal dynamics during treatment for faster detection of drug-resistant clones

Clinical Standard-of-Care (SOC) Guidelines

- adjuvant therapy
 - (post-surgery/radiation)
- neoadjuvant therapy
 - (pre-surgery/radiation)
- palliative therapy
 - (non-curative Rx for advanced disease)
- end-of-life care
 - (last six months but more typically last month: ICU, hospice, in-home)

Therapeutics

- small (heterocyclic) molecules <1500 Daltons Mw
- biologicals
 - recombinant (r)proteins, antibodies (natural/engineered)
 - nucleic acids: antisense, miRNAs, aptamers
- gene therapy (and delivery vectors)
- vaccines
 - prophylactic, therapeutic
- novel drug formulations/drug delivery systems

FDA-Approved Anti-Cancer Drugs

DNA Damaging Agents

Generic Name	Trade Name	Approved Indication	
altretamine	Hexalen	ovarian cancer	
arsenic trioxide	Trisenox	certain leukemias	
bendamustine	Treanda	multiple cancers	
bleomycin sulfate	Blenoxane	certain lymphomas, squamous cell and testicular cancers	
busulfan	Myleran, Busulfex	certain leukemias	
carboplatin	Paraplatin, Paraplat	breast, lung and ovarian cancers	
carmustine	BiCNU	brain tumors, certain lymphomas	
chlorambucil	Leukeran	multiple cancers	
cisplatin	Platinol-AQ	multiple cancers	
cyclophosphamide	Cytoxan	multiple cancers	
dacarbazine	DTIC-Dome	melanoma, certain brain cancers	
dactinomycin	Cosmegen	multiple cancers	
daunorubicin, daunomycin	Cerubidine	certain leukemias	
doxorubicin hydrochloride	Adriamycin PFS, AdriamycinRDF	multiple cancers	
epirubicin hydrochloride	Ellence	certain leukemias, breast and stomach cancers	

BIO 302: APRIL 1, 2014

WEEK 11, LECTURE 1: SUPPLEMENTAL MATERIALS

Dr. George Poste
Chief Scientist, Complex Adaptive Systems Initiative
and Del E. Webb Chair in Health Innovation Arizona State University (e-mail: george.poste@asu.edu; Tel. 480-727-8662)

www.casi.asu.edu

- expected to know different modes of action of anti-cancer drugs
- long lists of drugs posted on blackboard for reference only for those who want more information (no exam question on individual drugs)

Cytotoxic Chemotherapy

- DNA synthesis inhibitors (anti-metabolites)
- DNA damaging agents
- cytoskeleton (microtubule) modifying agents

Hormonal Agents

- hormones (agonists)
- hormone blockers (antagonists)

Targeted Chemotherapy

- small molecule cell signaling inhibitors
 - largely tyrosine kinase inhibitors (TKi's)
- angiogenesis inhibitors
 - again largely kinase inhibitors
- monoclonal antibodies
 - block growth factor receptors on tumor cells
 - induce tumor cell death
 - promote destruction by host defense cells (antibody dependent cellular cytotoxicity: ADCC)

Epigenetic Modulators

modify histones and gene expression

Proteasome Inhibitors

Cell Differentiation Agents

 induce terminal differentiation to non-replicating state (leukemias/lymphomas but not solid tumors to date)

Immunotherapeutics

- anti-tumor monoclonal antibodies
- immune checkpoint modulators (overcome tumor-induced suppression of host defenses)
- immunomodulators (stimulate immune system)
- anti-cancer vaccines (prophylactic or therapeutic)

Inherited Cancer Risk

Cancer	Syndrome	Associated Gene
Leukemias and lymphomas	Ataxia telangiectasia	ATM
All cancers	Bloom syndrome	BLM
Breast, ovarian, pancreatic, and prostate cancers	Breast-ovarian cancer syndrome	BRCA1, BRCA2
Breast, thyroid and endometrial cancers	Cowden syndrome	PTEN
Colorectal cancer	Familial adenomatous polyposis (FAP)	APC
Melanoma	Familial atypical multiple mole-melanoma syndrome (FAMM)	CDKN2A
Retinal cancer	Familial retinoblastoma	RB1
Leukemia	Fanconi's anemia	FACC, FACA
Colorectal cancer	Hereditary nonpolyposis colorectal cancer/Lynch syndrome	MLH1, MSH2, MSH6, PMS2
Pancreatic cancer	Hereditary pancreatitis/familial pancreatitis	PRSS1, SPINK1
Leukemias, breast, brain and soft tissue cancers	Li-Fraumeni	TP53
Pancreatic cancers, pituitary adenomas, benign skin and fat tumors	Multiple endocrine neoplasia 1	MEN1
Thyroid cancer, pheochromacytoma	Multiple endocrine neoplasia 2	RET, NTRK1
Pancreatic, liver, lung, breast, ovarian, uterine and testicular cancers	Peutz-Jeghers syndrome	STK11/LKB1
Tumors of the spinal cord, cerebellum, retina, adrenals, kidneys	von Hippel-Lindau syndrome	VHL
Kidney cancer	Wilms' tumor	WT1
Skin cancer	Xeroderma pigmentosum	XPD, XPB, XPA

Screening and Cancer Prevention in Individuals with Inherited Germline Mutations in Cancer Predisposing Genes

- surgical removal of 'at risk' organ in high risk patients
 - mastectomy, oophorectomy (BRCA-1/2 carriers)
 - stomach (CDH1 mutation)
 - thyroid (RET mutation)
 - colon (APC mutation)
- detection of early cancer and surgical resection
 - elevated catecholamines (phaeochromocytoma)
 - elevated calcitonin (thyroid cancer)

Flying Blind: One-Size-Fits All Rx Approaches to Complex Multigenic Diseases

Non-responders to Oncology Therapeutics Are Highly Prevalent and Very Costly

Non-responder

Sources: Individual Drug Labels. US Food and Drug Administration. www.fda.gov
Market and Product Forecasts: Top 20 Oncology Therapy Brands. DataMonitor, 2011.

Ignoring The Obvious in Clinical Practice

- diseases are not uniform
- patients are not uniform
- a "one-size fits all" Rx approach cannot continue
 ignores known variation
- ignores known variation in disease progression and therapeutic responses
- inefficiency and waste caused by empirical Rx
- cost of futile therapy
- risk to patients via AE's
- first rule of radical ethics: do no harm!

Medical Progress: From Superstitions to Symptoms to Signatures

Understanding Cancer Biology and the Quest for Improvements in Cancer Care

Precision Medicine

- right diagnosis and disease classification and subtyping by MDx
- right Rx for right disease subtype (efficacy)
- right Rx for right patient (efficacy and adverse event reduction)
- right dose, duration and timing (efficacy, safety and compliance)

Mapping Causal Perturbations in Molecular Pathways and Networks in Disease: Defining a New Taxonomy for Disease

"Omics" Profiling to Identify Disease Subtypes (+ or - Rx Target)

Altered Network Structure and ID of Molecular Targets for MDx and/or Rx Action

Heterogeneity of Driver Oncogenes in NSCLC

From: T. Mitsudomi et al. (2013) Nat. Rev. Clin. Oncol. 10, 235

Frequencies of Molecular Alterations in CRC and Responsiveness to Cetuximab or Panitumumab

From: M. Martini et al. (2012) Nature Rev. Clin. Oncol.

Oncogene Addiction

- tumor cells become reliant on particular oncogene
- die if addictive oncogene is inhibited
- rationale for 'targeted' cancer therapy to selectivity inhibit the relevant oncogene

Biomarkers, Disease Subtyping and Targeted Therapy: Companion Diagnostics – the Right Rx for the Right Disease (Subtype)

Her-2+ (Herceptin) (Perjeta)

EML4-ALK (Xalkori)

KRAS (Erbitux) (Vectibix)

BRAF-V600 (Zelboraf)

Targeted Oncology Therapies in Molecularly Stratified Populations

Cancer	Target	Agent	
Breast carcinoma	HER2 amplification	trastuzumab, lapatinib	
NSCLC (adenoCA)	EGFR mutations	EGFR TKIs (erlotinib, gefitinib)	
NSCLC	EML-ALK	ALK inhibitors (crizotinib)	
GIST	KIT and PDGFRA mutations	Imatinib	
Melanoma	BRAF-V600 mutation	BRAF inhibitor (vemurafenib)	
Ewing's sarcoma	EWS-FLI translocation	anti-IGF1R mab (figitumumab)	
Medulloblastoma BCC	PTCH1 or SMO mutations	SMO inhibitors (vismodegib)	
Ovarian/ breast CA	BRCA1/BRCA2 mutations	PARP inhibitors (olaparib)	
PRCC	MET mutations	MET TKIs (ARQ197. XL880)	

Genes For

The Overly Simplistic and Deterministic Dangers of a Genome-Sequence Centric Perspective

The Over-Simplified Perspective That
Whole Exome-and Whole Genome-Sequencing
Will Reveal the Full Etiology of Disease Pathogenesis
and Transform Treatment Options

Individual Variation, Genome Complexity and the Challenge of Genotype-Phenotype Predictions

Cell-specific Molecular Interaction Networks

Perturbed Networks and Disease

Profiling Changes in Biological Signaling Networks in Cancer: Understanding Cancer Requires a Holistic "Systems" Approach

- genome sequence data alone does not provide a sufficiently complete picture for either Dx or Rx decisions
 - need to understand cancer as a complex multi-component process
- mapping disruption in signaling pathways requires profiling of multiple aspects of both genotypic and phenotypic changes

The Need for Multi Molecular Diagnostic Platforms to Maximize the Number of Actionable Drug: Target Associations to Guide Therapeutic Decisions

FISH = fluorescent in situ hybridizaiton

CISH = chronogenic in situ hybrization

IHC = immunohistochemistry

Context:

Alteration of Rx Target in One Cancer Cell Type
May Not Always Translate to Rx Efficacy
in Cancers Arising in Different Cell Types

Expression of Same Mutation in Cancers Arising in Different Cell Lineages but with Different Response to Same Targeted Therapy

Melanoma BRAF-V600

positive response to vemurafenib

Colorectal Cancer BRAF-V600

10% patients carry mutation but unresponsive to vemurafenib due to compensatory activation of EGFR

EGFR Mutations in Different Structural Domains

Differential Sensitivity of Glioma-Versus Lung Cancer-Specific EGFR Mutations to EGFR Kinase Inhibitors

- EGFR mutations in lung cancer reside in the intracellular kinase domain
- EGFR mutations in glioblastoma multiforme (GBM) cluster in the extracellular domain
 - poor clinical results in GBM with erlotinib, gefitnib

The Three Most Dangerous Phenotypes in Tumor Cell Clones: metastasis; immunoevasion; and drug resistance

Dynamic Heterogeneity

Emergence and Adaptive Evolution of Different Tumor Clones and Subclones During Tumor Progression

Drug Resistance: The Principal Challenge in Cancer Rx Therapy

Tumor Cell Heterogeneity: The Omnipresent and Greatest Challenge in Cancer Therapy

Tumor Cell Heterogeneity: The Omnipresent and Greatest Challenge in Cancer Therapy

Tumor Cell Heterogeneity: The Omnipresent and Greatest Challenge in Cancer Therapy

Emergence of Drug-Resistance Mutations in Tumor Progression

mutation(s) in Rx-naïve patients

- "intrinsic resistance" to specific Rx
- exist prior to Rx

mutation(s)
in Rx-treated
patients

- "acquired resistance" to specific Rx
- Rx as selective pressure (cf. antibiotic resistance in bacteria)

Point Mutation^(M)-Driven Resistance to Targeted Anticancer Drugs

Evolution of Rx-Resistant Clones During Tumor Progression

Mutations Responsible for Acquired Resistance to Targeted Therapies

Gene	Genetic aberration	Tumor type	Acquired drug resistance
EGFR	T790M	Advanced NSCLC	Gefitinib Erlotinib
KRAS	Codon 12, 13 and 61	Colorectal cancer	Cetuximab
KIT	T670I	GIST	Imatinib
PIK3CA	NS	NSCLC	Erlotinib Gefitinib
ALK	C1156Y L1196M	NSCLC	Crizotinib
MEK1	C121S	Melanoma	Vemurafenib
BRAF	Amplification	Melanoma	Vemurafenib
NRAS	Q61K	Melanoma	Vemurafenib

Mutation Profiling of 23 Glioma Patients and Hypermutation in Temozolomide (TMZ) Treated Patients

From: B. E. Johnson et al. (2014) Science 343, 189

Emergence of Drug Resistance to Targeted Therapy in Melanoma

Initial Rx-Response to Targeted Rx

Rx-Resistance via Alternate Molecular Signaling Pathway (Network Redundancy) Circumvention of Rx-Resistance Requires Multi-site Blockade of Connected Signaling Pathways

B = 15 weeks Rx (Zelboraf®) C = 23 weeks Rx and emergence of MEK1C1215 mutant (Wagle et al. (2011) JCO 29, 3085)

'Compensatory' Signaling Pathways and Drug Resistance

Linkage (Connections) Between Different Signaling Pathways Offers a Major By-Pass for Cancer Cells to Develop Rx Resistance

From: C. R. Chong & P. A. Jänne (2013) Nature Medicine 19, 1389–1400 DOI: doi:10.1038/nm.3388

Network Pharmacology and Emergence of Drug-Resistant Cells

Drug Resistance Can Arise from Both Mutations in the Drug-Target Plus Use of By-Pass Pathways

Resistance to TKIs in EGFR-Mutant Lung Adenocarcinomas*

- development of resistance to gefitinib or erlotinib in c.40% patients after one year
- resistance via additional mutations
 - second-site resistance EGFR mutations (>50%)
- resistance via downstream or other by-pass pathways
 - amplification of MET receptor gene (5-10%)
 - mutations in PIK3CA encoding PI10α subunit of downstream lipid kinase PI3K (<5%)
- histologic transformation: EMT or small lung cancer (<5%)

* K. Ohashi et al. (2012) PNAS 109, 12282

Monitoring Treatment Efficacy

Monitoring Treatment Responses in Cancer Patients

- no, partial or complete response
- progression-free survival (interval) (PFS)
- progressive disease
- chronic, stable disease
- regulatory parameters: PFS and overall survival (OS)
- recurrent disease in patients previously viewed as having no or minimal residual disease
- terminal disease

RECIST

(Response Evaluation Criteria In Solid Tumors)

RECIST

Version 1.1 Update | RECIST in Practice

Monitoring Treatment Responses in Cancer

RECIST

- Response Evaluation Criteria In Solid Tumors
- imaging of size and volume of tumor metastases
- not sufficiently sensitive to detect emergence of treatment-resistant tumor cell clones in solid tumors

Monitoring Treatment Responses in Cancer

- earlier detection of lack of Rx efficacy
 - switch Rx regimen
- earlier detection of emergence of treatmentresistant clones
 - agile, anticipatory treatment to hit new resistant clones
 - greater current feasibility with 'liquid' hematopoietic tumors (leukemias, lymphomas) than solid tumors

Molecular Profiling and Rx Selection in Cancer Treatment

 given the high frequency (inevitability?) of emergence of Rx-resistant clones (intrinsic or acquired resistance) how can their emergence be best monitored?

"Liquid Biopsy" Monitoring of Changing Clonal Dynamics by Monitoring Tumor Specific Biomarkers in CRC

At diagnosis = APC and KRAS (Wild Type)
emergence = KRAS and NRAS mutations and MET amplification clones
From: L. A. Diaz Jr and A. Bardelli (2014) J Clin Oncol 32, 579

Mapping the Dynamics of Clonal Diversification in Tumor Progression

- urgent need for new technologies for minimally invasive profiling of the full spectrum of clones present in a patient and changes occurring over time with treatment
- difficult to sample (biopsy) multiple metastases in solid tumors
- the quest to create a 'liquid biopsy' for profiling clonal dynamics for solid tumor profiling from analysis of blood samples
 - exosomes
 - circulating tumor cells
 - cell-free (cf) DNA or miRNAs from tumor cells

Mapping the Dynamics of Clonal Diversification in Tumor Progression

- urgent need for new technologies for minimally invasive profiling of spectrum of clones present in a patient and changes over time with treatment
- inability to sample (biopsy) multiple metastases in solid tumors
- the quest to create a 'liquid biopsy' for tumor profiling from analysis of blood samples

Lecture in Week 14 on Drug Development

- cancer as a complex adaptive system
- dynamics of clonal evolution during tumor progression and treatment
- clonal evolutionary dynamics as a complex interplay between tumor (evasion) and host (detection/ destruction) activities
- the evolution of clonal heterogeneity is the core problem in effective therapy

Lecture 2: Cancer Treatment

- rethinking current chemotherapeutic approaches
- the promise of immunotherapy
- post-treatment clinical challenges for cancer survivors
- the impact of advanced cancer on body function and quality-of-life
- palliative care (non-curative)
- end-of-life care