

Advanced Manufacturing and Disruptive Technologies: Implications for Strategic Competitiveness

Dr. George Poste
Chief Scientist, Complex Adaptive Systems Initiative and Del E. Webb Chair in Health Innovation
Arizona State University

george.poste@asu.edu

www.casi.asu.edu

Presentation at DHS-DOD Meeting:
Policy Implications of Digital Fabrication: 3D Printing and Beyond
Schaefer Institute, Washington, DC
July 26, 2012

Advanced Manufacturing

Slides Available: http://casi.asu.edu/

The Strategic Environment for Technology-Based Industries

New Business Models, Networks and Alliances

Technology Diffusion and New Global Competitors

The Evolution of Production

"It from Bits" The Proliferation of Digital Design and Fabrication

Advanced Computing and Devices

Ubiquitous Sensing/ Social Networks

Biotechnology and Synthetic Biology

Complex Autonomous Systems

Disruptive Technologies

"Cyberspace"

"Connected Space"

"Bio-Space"

"Simulation Space"

"Threat Space"

"It from Bits" The Proliferation of Digital Design and Fabrication

Advanced Computing and Devices

Ubiquitous Sensing/ Social Networks Biotechnology and Synthetic Biology

Complex Autonomous Systems Disruptive Technologies

"Connected Space"

"Bio-Space"

"Simulation Space"

"Threat Space"

Emerging and Evolving Multi-Dimensional Matrices of Knowledge Networks

Global Challenges

Systems of Innovation

Advanced Manufacturing: Technology Vectors

technology convergence

life sciences, engineering, materials, robotics, computing

multiscale design

- simulation and fabrication at different scales
 - macro-, meso-, nano- and Ångstrom- level design

dramatic expansion of "design space"

- escalating distributed degrees of (design) freedom (DDOF)
- increasingly complex autonomous systems
- combinatorial assembly of increasingly diverse materials
- self-assembly and repair: learning from biology
- synthetic biology/directed evolution and exploring 'biospace'

Complicated Systems (Low DDOF)

• predictable performance and failure points

Complex Adaptive Systems: Increasing DDOF

- graded levels of autonomous behavior (components, systems)
- escalating challenge of predicting system behavior and state shifts

DNA as Universal Programming Language for Self-Assembly Systems: The Rise of Synthetic Biology, Directed Evolution and Bio-CAD

Directed Molecular Assembly and Materials Science

Sensors and Molecular Machines

Biomimetic Design: Organic-Inorganic Hybrids

Synthetic Biology: Bio-inspired Systems Engineering

- designed-organisms as bio-factories
- complex, multi-step syntheses, high performance materials made in completely different ways
- manufacturing at room temperature in water versus high temperatures and toxic solvents
- mimic resource efficiency of natural ecosystems
 - self-sustaining
 - limit depletion of non-renewable resources
 - limit/eliminate waste stream cost/hazard
- highly distributed manufacturing units

"It from Bits":

Modeling and Simulation of Complex Autonomous Systems as Foundation Competencies for R&D and Advanced Manufacturing

- large scale computer simulations of complex phenomena
- big data and open source data
- systemic application of advances in cognitive neurobiology and human: machine interactions for improved design and decision making
- simulation modeling and scenario gaming for systems performance assessment and public policy options
- Investment in national digital infrastructure and new educational curricula

Advanced Manufacturing Distribution and Democratization of the Manufacturing Base

Product Authenticity and Provenance

- source(s)
 - QA/QC, safety, performance
- counterfeit detection
 - dynamic, evolvable tags
- IP protection
- export controls
- 'trojan horse' detection
- dual use monitoring
- classified methods

Social Manufacturing: Democratization of Manufacturing: The Maker Movement and Mobile Multiple Markets of One

Energy Development

Crowd- and Citizen-Science, Gamers and Hackers

Public Policy Implications of Next-Generation Manufacturing Systems

- growing gap between technology frontiers and US Institutional analytical and acquisition agilities in disruptive technologies
 - academic silos and USG funding policies
 - 'rapid' and 'translation' are countercultural to much of academia/USG agencies
 - financial short-termism and risk aversion in private sector R&D
 - lax cybersecurity: espionage-exfiltration
- outdated or lack of coherent USG policies
 - sclerotic, anachronistic FAR
 - regulation, trade policy, export controls
 - IP, counterfeits and product provenance
 - international harmonization

Big Bang-Big Metal Defense Systems

- DOD as pioneer of new conceptual and technology advances
- integrated DoD-industrial ecosystem
- seeding of major innovation in non-defense sectors
- risk to technical: economic strategic superiority?

Network-Centric Warfare, Intelligence and Cyber-Threats

- sophisticated purchaser versus embedded systemic innovation and seeding of new industrial domains
- classified innovation domains?

Biotechnology and Molecular Medicine

- private sector innovation versus lagging USG initiatives
 - Dx, Rx, Ix, Vax
 - novel materials, sensors, biomimetic devices
 - m(mobile)Health
 - synthetic biology and new manufacturing platforms

Biodefense, Surveillance and New Counter-Measures

- poor ROI?
- mission(s) and accountability?
- poor engagement of proven industrial expertise?
- combating agent-X, rapid response capabilities and agile stockpile management?

Understanding Complexity

Building New Systems of Innovation

Boldness Must Trump Timidity

Advanced Manufacturing: A Critical Strategic Asset for US Competitiveness and National Security

"It from Bits": Digital Design

- impact on multiple defense and civilian sectors
- technology acceleration and convergence
- rapid diffusion and ubiquity of disruptive technologies
- escalating complexity in systems design
- modeling and simulation capabilities
- verification and validation protocols for complex autonomous systems
- new economic and defense threats
- Schumpeterian winners and losers

Advanced Manufacturing: A Critical Strategic Asset for US Competitiveness and National Security

USG actions

- organization and funding of transdisciplinary academic research
- agency accountability for poor ROI
- FAR reform
- build defense R&D and manufacturing capabilities in emergent domains (bio-inspired technologies)
- policy voids: regulation, trade, export rules, IP, antitrust
- cybersecurity and technology espionage/exfiltration

improve translational science

- reverse VC and industry retreat and the Valley of Dea(r)th
- USG agency missions/competencies/accountabilities
- pre-competitive consortia 'Apollo Projects' to capture critical technology platforms

Ultimate Frontiers in Advanced Manufacturing

Mike Teavee and the Television Chocolate Camera

Star-Trek Teleportation

Unicorn Meat

Slides Available: http://casi.asu.edu/

