Building a Collaboration Network in Transthyretin Cardiac Amyloidosis: Challenges and Opportunities

Dr. George Poste
Regents' Professor and Del E. Webb Chair in Health Innovation
Director, Complex Adaptive Systems Initiative, Arizona State University
Co-Director, ASU-UA Institute for Future Health
george.poste@asu.edu

Updates in Cardiac Amyloidosis: CME Conference
Mayo-ASU Health Futures Center
14 January 2023, Phoenix, Arizona
Transthyretin Cardiac Amyloidosis (ATTR-CA)

- higher prevalence than previously recognized in patients with HFpEF (ATTRwt / ATTRv)
 - under-diagnosed, under-treated
- often long delay between symptoms onset and definitive diagnosis
 - high utilization of health services in interval before diagnosis
- poor prognosis if untreated
 - median survival (2.5-3yr ATTRv : 3-5 yrs ATTRwt)
- expansion of Rx options
 - TTL silencers and stabilizers (ATTR-CM and ATTR-PN)
- Rx most effective before progression to NYHA class III-IV
 - reinforces priority for early detection
ATTR-CA: The publication tsunami
PubMed Search Term (italics) results by year, quotations represent exact phrase

"cardiac amyloidosis" 1993-2022

"cardiac amyloidosis" 1948-2022

"cardiac amyloidosis therapy"
Transthyretin Cardiac Amyloidosis (ATTR-CA):

- limited Arizona-specific data
 - prevalence/incidence across age, gender, ethnicity, geography, SDoH
 - treatment patterns and outcomes
- majority of national/international data from hospitalized patients and specialized amyloid clinics in academic medical centers
- limited data on Hispanic populations and none on Native American populations
Transthyretin Cardiac Amyloidosis (ATTR-CA)

- transition from invasive endomyocardial biopsy to non-invasive scintigraphic imaging
- development of multi-parameter phenotypic risk scores to select patients for scintigraphic diagnosis versus economically unrealistic imaging of all HFpEF / NP cases
 - clinical, ECG, echocardiographic, ICDs, claims data, non-cardiac predictors (neuropathies, carpal tunnel, synovitis/tenosynovitis, spinal stenosis)
 - new ML/AI algorithms
 - need for validation of risk score metrics across cohorts with variable ATTR-CA prevalence rates
Issues in Transthyretin Cardiac Amyloidosis: Diagnosis and Clinical Management

- improve broader clinical recognition and awareness beyond specialized amyloid centers
- paucity of validated low-cost biomarkers from easily acquired biospecimens (blood, urine)
 - expand cost-effective screening for earlier detection and Rx initiation
 - prognosis and prediction of PN to CM progression risk
 - evaluation of Rx efficacy
 - disease progression monitoring and correlation with functional metrics and QOL
 - screening of asymptomatic ATTRv cohorts for late onset disease due to incomplete mutation penetrance
Issues in Clinical Management of ATTR-CM: Treatment

- comparative efficacy of TTR stabilizers and silencers?
- value of combination Rx
 - additive/synergistic; no benefit; new AE risks?
 - when to transition from monotherapy?
 - agent dose titration, dosing frequency and order of administration?
 - economic feasibility given high cost of individual agents?
- are there thresholds for irreversible progression and lack of Rx efficacy?
- is ATTR-CM reversible (microfibril clearance agents)?
Disease-Modifying Agents in Transthyretin Amyloidosis: Treatment Cost

- currently approved Rx require life-long therapy
- high annual cost of approved Rx ($225-500K)
- age-related prevalence and significant OOP spend for older patients under Medicare-Part D
 - influence on adoption rates and Rx adherence
- substantial reduction in list price for existing Rx to achieve cost-effective QALY thresholds of $50-150K
The ATTR Therapeutics Pipeline

<table>
<thead>
<tr>
<th></th>
<th>Preclin</th>
<th>Phil I</th>
<th>Phil II</th>
<th>Phil III</th>
<th>Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyneuropathy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onpattro pasitran</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>siRNA</td>
</tr>
<tr>
<td>Akrisya</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amvuttra valrisiran</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>siRNA</td>
</tr>
<tr>
<td>Akrisya</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tegsedi inotersen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Antisense</td>
</tr>
<tr>
<td>Ionis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vyndamox/Vyndaqel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Small molecule</td>
</tr>
<tr>
<td>Pfizer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eplontersen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Antisense</td>
</tr>
<tr>
<td>Ionis, AstraZeneca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolcapone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Small molecule</td>
</tr>
<tr>
<td>SOR Ritech</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTLA-2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CRISPR therapy</td>
</tr>
<tr>
<td>Intellia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cardiomyopathy					
Vyndamox/Vyndaqel					Small molecule
Pfizer					
Onpattro pasitran					siRNA
Akrisya					
Amvuttra valrisiran					siRNA
Akrisya					
Eplontersen					Antisense
Ionis, AstraZeneca					
Acoramid					Small molecule
BridgeBio, Alion					
PXX0004					Antisense
Prothena, Novo Nordisk					
NIH016					Antibody
Neurimmune, Alexion					
NTLA-2003					CRISPR therapy
Intellia					

ATTR					
NPT1189					Fusion protein
Preciata					
AT-03					Fusion protein
Altrasys					
AT-02					Fusion protein
Altrasys					
ATC-202					Chimeric ligand
Astrotact					

Source: Company websites and BioCentury • *Not approved for ATTR-PN in the U.S.
Transthyretin Cardiac Amyloidosis: A Pending Therapeutic Paradigm Shift?

- currently approved agents require lifelong therapy
- transition from Rx disease modification to curative intervention?
 - CRISPR-cas9 TTR gene editing knockout (Intellia/Regeneron: NTLA-2001)
 - initial efficacy studies in hereditary amyloid polyneuropathies and ongoing expansion to ATTR-CM
 - encouraging duration of reduced TTR expression levels (6-12 months) but clinical benefit to be demonstrated
 - threshold of hepatocyte transduction efficiency required for long term efficacy?
 - monitoring off-target effects (often delayed)?
The Challenges and Opportunities in TTR-Amyloidosis Reflect Many of the Same Elements Shaping Biomedical R&D and Healthcare Delivery At Large
The Contemporary Environment for Biomedical R&D and Healthcare Delivery

- aging populations, economically unsustainable chronic disease burden and major unmet clinical/social needs
- public and political expectations of constant innovation to improve access, availability and quality of care, lower cost, clinical outcomes and QOL
- multiOmics stratification of major diseases into subtypes with distinct molecular pathologies (precision medicine)
- high Rx prices for smaller market of size of subtype-specific Rx (proliferation of ‘orphan status’ designations)
- need for companion Dx in disease subtype Rx selection
The Contemporary Environment for Biomedical R&D and Healthcare Delivery

- escalating scientific and clinical complexity (staying current)
 - pace and diversity of innovation: new concepts; new technologies
 - burgeoning large-scale data sets
- fusion of previously largely separate domains
 - biomedicine, engineering, computing
 - new combination products: Dx-Rx-device-lx algos
- accelerated adoption of ML/AI technologies
 - regulatory validation (SaMD)
- new regulatory and pharmacoeconomic requirements: efficacy, safety and VALUE
Solutions for Major Unmet Medical Needs Require Sophisticated Integration of Multidisciplinary Expertise

The S4 to M4 Paradigm Shift

S4
- single discipline/speciality
- single institution
- subcritical resources
- slow (translation to practical benefit)

M4
- multidisciplinary/specialities
- multiple institutions
- managing scale and integration logistics
- momentum (faster translation and adoption)
Solutions for Major Unmet Medical Needs Require Sophisticated Integration of Multidisciplinary Expertise

- Single discipline/speciality
- Single institution
- Subcritical resources
- Slow (translation to practical benefit)

- Multidisciplinary/specialities
- Multiple institutions
- Managing scale and integration logistics
- Momentum (faster translation and adoption)

The S4 to M4 Paradigm Shift

SILOS SUBVERT SOLUTIONS
Arizona

- third fastest growing US state (Tx, Fla, Az)
- metro-Phoenix: Maricopa County
 - now fifth largest US urban population (cf. Philadelphia, Houston comps)
 - second fastest population growth in US
- unique demographics
 - Hispanics (24%), Native Americans (5.6%)
- limited number of major healthcare provider systems facilitates development of clinical research collaboration network trials
 - Abrazo, Banner, Dignity (Common Spirit), Honor Health, Mayo, ValleyWise, VA
 - attraction to industry sponsors of turnkey networks to accelerate investigational trials (Dx, Rx, devices, Ix algos)
- rapid growth in university R&D
 - ASU, UA, NAU: $1.5 billion annual grant revenues
Network Arizona: Building State-Wide Consortium Networks

- Aegis Consortium (pandemic preparedness)
- ACCEL: Arizona Coalition for Comprehensive Evaluation of Long COVID
- Arizona Alzheimer’s Consortium
- Arizona Telemedicine Council (platforms, policy)
- Arizona Emergency Medical Reserve System (pandemic and disaster preparedness, emergency supply chain management)
- WearTech Applied Research Center (sensors, remote health monitoring)
Exploration of New Biomarkers for ATTR-Amyloidosis to Facilitate Expanded Diagnostic Screening and Disease Progression Monitoring

<table>
<thead>
<tr>
<th>Biobanks</th>
<th>New Biomarker Analytes</th>
<th>Analytic Platforms</th>
<th>Data Analytics</th>
</tr>
</thead>
<tbody>
<tr>
<td>• longitudinal registry paired with EHRs</td>
<td>• multiOmics ATTRwt/v profiling</td>
<td>• NGS</td>
<td>• high performance computing</td>
</tr>
<tr>
<td>• ethnic diversity</td>
<td>• WES/WTS (WGS)</td>
<td>• mass spectrometry</td>
<td>• ML/AI</td>
</tr>
<tr>
<td>• disease stages</td>
<td>• proteomics</td>
<td>• hyperspectral microscopy</td>
<td>• expanded multi-parameter risk scores</td>
</tr>
<tr>
<td>• multi-organ amyloidosis</td>
<td>• exosomes</td>
<td>• TTR subunit exchange assays</td>
<td>• pharmaco-economic analyses</td>
</tr>
<tr>
<td>- cardiac</td>
<td>• ATTR structural biology</td>
<td>• TTR peptide probes</td>
<td></td>
</tr>
<tr>
<td>- non-cardiac</td>
<td></td>
<td>• cyroEM</td>
<td></td>
</tr>
<tr>
<td>• blood, urine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• biopsies</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Arizona Transthyretin Translational Research Network (ATTR-N)

- build state-wide network of research and clinical expertise for advances in the detection and treatment of ATTR-amyloidosis
- generate detailed epidemiological data on ATTR-amyloidosis prevalence in Arizona, clinical interventions and outcomes
 - age, gender, ethnicity, geography
 - new hereditary risk variants in Hispanic/native American populations
- analyze multi-level (patient, provider, payer) barriers and facilitators to implementation of EBP care protocols
- build additional scale via collaboration with other national/international COEs in ATTR-Amyloidosis
Disclosures

- Board of Directors (Oncology Therapeutics)
- Board of Directors (Oncology Molecular Diagnostics)
- Board of Directors (CAR-T Cell Therapy)
- Board of Directors (Next Generation Nanopore Sequencing)
- Scientific Advisory Board (Gene Editing)
- Scientific Advisory Board (Infectious Disease Dx and Rx)
- Co-Founder (ML/AI Computational Modeling of Immune Recognition Epitope)

Slides Available at: https://casi.asu.edu/presentations/
Declarations

● Board of Directors
 - Exelixis
 - Caris Life Sciences
 - MediSix

● Advisory Boards
 - VirBiotech
 - University of Michigan, Taubman Institute
 - Bipartisan Commission on Biodefense

● Presentation content
 - materials are for non-commercial, educational, scientific and research purposes and no copyright is claimed